Abstract
The treatment of auricle defect can be by surgical or prosthetic ear rehabilitation depending on the condition. Current practice by surgeon for prosthetic ear rehabilitation require patient to go for osseointegrated craniofacial implant surgery for retention of the prosthetic ear. Impression technique play a vital role in accurate reproduction of affected and unaffected ears, orientation of the ear during wax try in and fabrication of ear prostheses. Traditionally, the wax pattern was created from the impression taken from patient and the final prosthesis is processed with silicone material. This conventional method has always been time consuming, massive work and caused discomfort to patient. Moreover the accuracy of the final prosthetic sometimes was not satisfied. Improvement in medical imaging technology whereby data from computerized tomography (CT) in 2D format can be converting to 3 dimensional images gave tremendous view for surgeon to visualize the result. A new and impressive advance in the development of additive manufacturing technology is now being able to be applied in medical field. The widespread use of computer-aided design (CAD) combine with computer aided manufacturing (CAM) produced the momentum and desire to translate the 3-D images into physical models. Studies and research have indicated the viability of using medical imaging technology, computer aided design (CAD) and additive manufacturing techniques in prosthetics. This paper proposed a novel method of fabricating the prosthetic ear applying mirror image technique to reconstruct the missing ear, and then fabricate the 3D model of the prosthetic ear using Stereolitography (SLA) technology that will become the master mold to produce the final prosthetic ear. This method eliminates the traditional wax pattern procedure. A clinical study is done onto a patient in HUSM and comparison is made between traditional method vs new approach using computer aided technology. Result showed that there is significant different between traditional and new approach design. The new method also shows time reduction during design and fabrication stage.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.