Abstract

The high prevalence of osteoblastic bone metastases in prostate cancer involves the production of osteoblast-stimulating factors by prostate cancer cells. Prostate-specific antigen (PSA) is a serine protease uniquely produced by prostate cancer cells and is an important serologic marker for prostate cancer. In this study, we examined the role of PSA in the induction of osteoblast differentiation. Human cDNA containing a coding region for PSA was transfected into human osteosarcoma SaOS-2 cells. SaOS-2 cells were also treated with exogenously added PSA. We evaluated changes in global gene expression using cDNA arrays and Northern blot analysis resulting from expression of PSA in human osteosarcoma SaOS-2 cells. SaOS-2 cells expressing PSA had markedly up-regulated expression of genes associated with osteoblast differentiation including runx-2 and osteocalcin compared with the controls. Consistent with these results, the stable clones expressing PSA showed increased mineralization and increased activity of alkaline phosphatase in vitro compared with controls, suggesting that these cells undergo osteoblast differentiation. We also found that osteoprotegerin expression was down-regulated and that the receptor activator of NF-kappaB ligand expression was up-regulated in cells expressing PSA compared with controls. Modulation of the expression of osteogenic genes and alteration of the balance between osteoprotegerin-receptor activator of NF-kappaB ligand by PSA suggests that PSA produced by metastatic prostate cancer cells may participate in bone remodeling in favor of the development of osteoblastic metastases in the heterogeneous mixture of osteolytic and osteoblastic lesions. These findings provide a molecular basis for understanding the high prevalence of osteoblastic bone metastases in prostate cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call