Abstract

We propose a fully automated method for prostate segmentation using random forests (RFs) and graph cuts. A volume of interest (VOI) is automatically selected using supervoxel segmentation, and its subsequent classification using image features and RF classifiers. The VOIs probability map is generated using image and context features, and a second set of RF classifiers. The negative log-likelihood of the probability maps acts as the penalty cost in a second-order Markov random field cost function. Semantic information from the second set of RF classifiers is an important measure of each feature to the classification task, which contributes to formulating the smoothness cost. The cost function is optimized using graph cuts to get the final segmentation of the prostate. With average dice metric (DM) (on the training set) and DM (on the test set), our experimental results show that inclusion of the context and semantic information contributes to higher segmentation accuracy than other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.