Abstract

Our aim is to develop a clinically viable, fast-acquisition, prostate MR elastography (MRE) system with transperineal excitation. We developed a new actively shielded electromagnetic transducer, designed to enable quick deployment and positioning within the scanner. The shielding of the transducer was optimized using simulations. We also employed a new rapid pulse sequence that encodes the three-dimensional displacement field in the prostate gland using a fractionally encoded steady-state gradient echo sequence, thereby shortening the acquisition time to a clinically acceptable 8-10 min. The methods were tested in two phantoms and seven human subjects (six volunteers and one patient with prostate cancer). The MRE acquisition time for 24 slices, with an isotropic resolution of 2 mm and eight phase offsets, was 8 min, and the total scan, including positioning and set-up, was performed in 15-20 min. The phantom study demonstrated that the transducer does not interfere with the acquisition process and that it generates displacement amplitudes that exceed 100 µm even at frequencies as high as 300 Hz. In the in vivo human study, average wave amplitudes of 30 µm (46 µm at the apex) were routinely achieved within the prostate gland at 70 Hz. No pain or discomfort was reported. Results in a single patient suggest that MRE can identify cancer tumors, although this result is preliminary. The proposed methods allow the integration of prostate MRE with other multiparametric MRI methods. The results of this study clearly motivate the clinical evaluation of transperineal MRE in patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.