Abstract

Multiparametric MRI (mpMRI) has shown promise in the detection and localization of prostate cancer foci. Although techniques have been previously introduced to delineate lesions from mpMRI, these techniques were evaluated in datasets with T2 maps available. The generation of T2 map is not included in the clinical prostate mpMRI consensus guidelines; the acquisition of which requires repeated T2-weighted (T2W) scans and would significantly lengthen the scan time currently required for the clinically recommended acquisition protocol, which includes T2W, diffusion-weighted (DW), and dynamic contrast-enhanced (DCE) imaging. The goal of this study is to develop and evaluate an algorithm that provides pixel-accurate lesion delineation from images acquired based on the clinical protocol. Twenty-five pixel-based features were extracted from the T2-weighted (T2W), apparent diffusion coefficient (ADC), and dynamic contrast-enhanced (DCE) images. The pixel-wise classification was performed on the reduced space generated by locality alignment discriminant analysis (LADA), a version of linear discriminant analysis (LDA) localized to patches in the feature space. Postprocessing procedures, including the removal of isolated points identified and filling of holes inside detected regions, were performed to improve delineation accuracy. The segmentation result was evaluated against the lesions manually delineated by four expert observers according to the Prostate Imaging-Reporting and Data System (PI-RADS) detection guideline. The LADA-based classifier (60±11%) achieved a higher sensitivity than the LDA-based classifier (51±10%), thereby demonstrating, for the first time, that higher classification performance was attained on the reduced space generated by LADA than by LDA. Further sensitivity improvement (75±14%) was obtained after postprocessing, approaching the sensitivities attained by previous mpMRI lesion delineation studies in which nonclinical T2 maps were available. The proposed algorithm delineated lesions accurately and efficiently from images acquired following the clinical protocol. The development of this framework may potentially accelerate the clinical uses of mpMRI in prostate cancer diagnosis and treatment planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.