Abstract

Metastatic castration-resistant prostate cancer (mCRPC) remains fatal and incurable, despite a variety of treatments that can delay disease progression and prolong life. Immune checkpoint therapy is a promising treatment. However, emerging evidence suggests that exosomal programmed necrosis ligand 1 (PD-L1) directly binds to PD-1 on the surface of T cells in the drain lineage lymph nodes or neutralizes administered PD-L1 antibodies, resulting in poor response to anti-PD-L1 therapy in mCRPC. Western blotting and immunofluorescence were performed to compare PD-L1 levels in exosomes derived from different prostate cancer cells. PC3 cells were subcutaneously injected into nude mice, and then ELISA assay was used to detect human specific PD-L1 in exosomes purified from mouse serum. The function of CD8+ T cells was detected by T cell mediated tumor cell killing assay and FACS analysis. A subcutaneous xenograft model was established using mouse prostate cancer cell RM1, exosomes with or without PD-L1 were injected every 3 days, and then tumor size and weight were analyzed to evaluate the effect of exosomal PD-L1. Herein, we found that exosomal-PD-L1 was taken up by tumor cells expressing low levels of PD-L1, thereby protecting them from T-cell killing. Higher levels of PD-L1 were detected in exosomes derived from the highly malignant prostate cancer PC3 and DU145 cell lines. Moreover, exosomal PD-L1 was taken up by the PD-L1-low-expressing LNCaP cell line and inhibited the killing function of CD8-T cells on tumor cells. The growth rate of RM1-derived subcutaneous tumors was decreased after knockdown of PD-L1 in tumor cells, whereas the growth rate recovered following exosomal PD-L1 tail vein injection. Furthermore, in the serum of mice with PCa subcutaneous tumors, PD-L1 was mainly present on exosomes. In summary, tumor cells share PD-L1 synergistically against T cells through exosomes. Inhibition of exosome secretion or prevention of PD-L1 sorting into exosomes may improve the therapeutic response of prostate tumors to anti-PD-L1 therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.