Abstract

A novel gene, prostate cancer antigen (PCA)-1, was recently reported to be expressed in the prostate; however, its biological roles remain unclear. Knockdown of the PCA-1 gene by small interfering RNA transfection induced apoptosis through reducing the expression of the anti-apoptotic molecule Bcl-xl and cytoplasmic release of cytochrome c in the androgen-independent prostate cancer cell line PC3. Moreover, in vitro matrigel and in vivo chorioallantoic membrane assays showed that silencing of PCA-1 significantly downregulated discoidin receptor (DDR)-1 expression, resulting in suppression of cancer-cell invasion. Transfection with PCA-1 increased the levels of both Bcl-xl and DDR1, which made the cells more invasive through the upregulation of matrix metalloproteinase 9 in DU145. Interestingly, long-term culture using androgen-free medium increased the level of PCA-1 and the related expression of Bcl-xl and DDR-1 in the androgen-sensitive cancer cell line LNCaP, suggesting that PCA-1 signaling is associated with androgen independence. Immunohistochemical analysis in a series of 169 prostate carcinomas showed that PCA-1 and DDR1 were strongly expressed in prostate cancer cells, including preneoplastic lesions, but there was little or no expression in normal epithelium. Moreover, the expression of PCA-1 and DDR-1 was associated with a hormone-independent state of prostate cancer. Taken together, we propose that PCA-1-DDR-1 signaling is a new important axis involved in malignant potential prostate cancer associated with hormone-refractory status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call