Abstract

The aim of this study was to determine to what extent we could identify the metabolism product peak using 3-T proton magnetic resonance spectroscopic imaging (MRSI) of the prostate gland in healthy volunteers by combining an external array coil with Malcolm Levitt composite-pulse decoupling sequence (MLEV)-point-resolved spatially localized spectroscopy (PRESS). MRSI data were obtained from the entire prostate gland in six healthy volunteers. The heights of the choline, citrate peaks and the standard deviation (SD) of the noise in each voxel were calculated. When the choline and/or citrate peak in a voxel exceeded 3 SD, the peak was clearly identified. The clear citrate peak rate in the peripheral zone (PZ) and the central gland (CG) were 78.8 and 70.3 %, respectively. The clear choline peak rate in the PZ and the CG were 55.4 and 44.9 %, respectively. In addition, the clear peak rates for both citrate and choline in the PZ and the CG were 51.8 and 38.6 %. Therefore, in the entire prostate gland, 75.2 % had a clear citrate peak, 51.1 % had a clear choline peak, and 46.3 % had both citrate and choline peaks. The citrate peak was clearly detected in 75.2 % of the voxels by this technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call