Abstract
Expression of prostasin in the PC-3 human prostate carcinoma cells inhibited in vitro invasion, but the molecular mechanisms are unknown. Wild-type human prostasin or a serine active-site mutant prostasin was expressed in the PC-3 cells. Molecular changes were measured at the mRNA and the protein levels. Cell signaling changes were evaluated by measuring phosphorylation of the extracellular signal-regulated kinases (Erk1/2) following epidermal growth factor (EGF) treatment of the cells. Protein expression of the EGF receptor (EGFR) was differentially down-regulated by the wild-type and the active-site mutant prostasin. The mRNA expression of EGFR and the transcription repressor SLUG was reduced in cells expressing wild-type prostasin but not the active-site mutant. Phosphorylation of Erk1/2 in response to EGF was greatly reduced by the wild-type prostasin but not by the active-site mutant. The mRNA expression of the urokinase-type plasminogen activator (uPA), the uPA receptor (uPAR), cyclooxygenase-2 (COX-2), and the inducible nitric oxide synthase (iNOS) was decreased by the wild-type and the active-site mutant prostasin. The mRNA or protein expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), matriptase, and E-cadherin was greatly increased by the active-site mutant prostasin. In conclusion, prostasin expression elicits both protease-dependent and independent molecular changes in the PC-3 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.