Abstract

In normal condition, vasculature transports only small molecules such as nutrients across vascular wall. When inflammation occurs, inflammatory stimuli increase the permeability of vessel, which induces the extravasation of molecules larger than 40 kDa including plasma proteins. These extravasated molecules cause further inflammation by promoting the infiltration of inflammatory cells and the production of inflammatory mediators. Although it is known that vascular hyper-permeability plays an important role in inflammation, the detailed mechanism of vascular permeability regulation is still unclear. It is known that vascular permeability is controlled by two types of cells: endothelial cells and vascular mural cells. Endothelial cells cover the luminal side of vascular wall in a single layer and form endothelial barrier. Vascular mural cells regulate the blood flow volume of the downstream tissue by contracting or relaxing vascular wall. Endothelial barrier enhancement and vasocontraction suppress the vascular permeability, while endothelial barrier disruption and vasorelaxation promote it. Vascular permeability is regulated by the balance between the response of endothelial cells and vascular mural cells. Prostanoids are cell membrane-derived lipid mediators which bind to each specific G protein-coupled receptor (GPCR), prostanoid receptors. Recently, several studies showed that prostanoids regulate vascular permeability by acting on endothelial cells and/or vascular mural cells. In this review, we would like to describe the role of each prostanoid in vascular permeability by focusing on the characteristics of each specific receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call