Abstract

IntroductionThe prostaglandin transporter (Pgt) and multidrug resistance-associated protein (Mrp) 4 are membrane transport proteins that play crucial roles in the transmembrane uptake and/or efflux of prostaglandins (PGs). This study attempted to analyze the protein expression of Pgt and Mrp4 and their involvement in PGE2 efflux transport in lipopolysaccharide (LPS)-inflamed rat incisor pulp tissue. MethodsPulpitis was induced in the upper incisors of Wistar rats by treating them with LPS for 24 hours. The protein expression levels of Pgt, Mrp4, and microsomal PGE synthase (mPGES) were analyzed with immunofluorescent staining. The amount of PGE2 released from the inflamed pulp tissue in the presence or absence of dipyridamole (an Mrp4 inhibitor) was assessed by using an enzyme-linked immunosorbent assay. ResultsDouble immunofluorescence staining revealed that the Pgt, Mrp4, and mPGES immunoreactivity co-localized in CD31-expressing endothelial cells. Moreover, the Mrp4 inhibitor caused a significant decrease in the amount of PGE2 released from the LPS-inflamed pulp (P < .01 at 24 hours). ConclusionPgt, Mrp4, and mPGES expression was detected in the endothelial cells of normal and LPS-inflamed rat incisor pulp tissue, suggesting that these cells are associated with the biosynthesis and transmembrane transport of PGE2. The significant decrease in PGE2 release induced by the Mrp4 inhibitor suggests that Mrp4 contributes to the transport of PGE2 in the transmembrane efflux pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call