Abstract

The experiments reported here were designed for both in vivo and in vitro approaches in the same animals to obtain a better picture of the role of estrogen in the control of parturition. Chronically catheterized pregnant ewes were treated with vehicle (n = 5) or estradiol (n = 6), 5 mg twice a day, im for 2 d starting at d 119 of gestation. Maternal and fetal plasma estradiol, progesterone, and cortisol were measured by RIA and maternal plasma prostaglandin (PG) F2alpha was measured by enzyme immunoassay. Intrauterine PG H synthase 2 mRNA and protein and placental P450(c17)alpha hydroxylase mRNA were determined by Northern, in situ hybridization, Western blot analysis, and immunocytochemistry. Data were analyzed by ANOVA. Five of six estradiol-treated ewes delivered their fetuses within 48 h; however, the placenta was still retained 5-6 h after fetal delivery. Both maternal plasma estradiol and PGF2 alpha increased significantly in the estradiol-treated group. Maternal and fetal plasma progesterone and cortisol were not altered in either group. There were significant increases of PGH synthase 2 mRNA and protein in myometrium, endometrium, and maternal placenta but not in fetal placenta in estradiol-treated ewes. Placental P450(c17)alpha hydroxylase mRNA was not detectable in vehicle or estradiol-treated groups. Estradiol can, in the absence of increase in plasma cortisol, stimulate uterine PG production and induce labor, resulting in fetal delivery in the sheep. Failure of placental delivery after estradiol treatment suggests that estradiol alone is insufficient to stimulate some of the key changes required to complete delivery at the stage of gestation studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.