Abstract
Bone sialoprotein (BSP), an early marker of osteoblast differentiation, has been implicated in the nucleation of hydroxyapatite during de novo bone formation. Prostaglandin E2 (PGE2) has anabolic effects on proliferation and differentiation of osteoblasts via diverse signal transduction systems. Because PGE2 increases the proportion of functional osteoblasts in fetal rat calvarial cell cultures, we investigated the regulation of BSP, as an osteoblastic marker, by PGE2. Treatment of rat osteosarcoma UMR 106 cells with 3 microm, 300 nm, and 30 nm PGE2 increased the steady state levels of BSP mRNA about 2.7-, 2.5-, and 2.4-fold after 12 h. From transient transfection assays, the constructs including the promoter sequence of nucleotides (nt) -116 to +60 (pLUC3) were found to enhance transcriptional activity 3.8- and 2.2-fold treated with 3 microm and 30 nm PGE2 for 12 h. 2-bp mutations were made in an inverted CCAAT box (between nt -50 and -46), a cAMP response element (CRE; between nt -75 and -68), a fibroblast growth factor 2 response element (FRE; nt -92 to -85), and a pituitary-specific transcription factor-1 motif (between nt -111 and -105) within pLUC3 and pLUC7 constructs. Transcriptional stimulation by PGE2 was almost completed abrogated in constructs that included 2-bp mutations in either the CRE and FRE. In gel shift analyses an increased binding of nuclear extract components to double-stranded oligonucleotide probes containing CRE and FRE was observed following treatment with PGE2. These studies show that PGE2 induces BSP transcription in UMR 106 cells through juxtaposed CRE and FRE elements in the proximal promoter of the BSP gene.
Highlights
factor response element (FRE) was observed following treatment with Prostaglandin E2 (PGE2)
Because PGE2 increases the proportion of functional osteoblasts in fetal rat calvarial cell cultures, we investigated the regulation of Bone sialoprotein (BSP), as an osteoblastic marker, by PGE2
Our studies show that PGE2 increases transcription of the BSP gene through cAMP-dependent protein kinase, tyrosine kinase, and MAP kinase pathways and that the effects are mediated via cAMP response element (CRE) and FRE transcriptional elements in the proximal promoter of the rat BSP gene
Summary
FRE was observed following treatment with PGE2. These studies show that PGE2 induces BSP transcription in UMR 106 cells through juxtaposed CRE and FRE elements in the proximal promoter of the BSP gene. Our studies show that PGE2 increases transcription of the BSP gene through cAMP-dependent protein kinase, tyrosine kinase, and MAP kinase pathways and that the effects are mediated via CRE and FRE transcriptional elements in the proximal promoter of the rat BSP gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.