Abstract

Regulatory T cells (Treg cells) belong to a class of immunosuppressive cells that control the pathological changes of autoimmunity and inflammation. Prostaglandin E2 (PGE2) is a potent lipid mediator of immune inflammation including rheumatoid arthritis (RA) that exerts its effects via four subtypes of G-protein-coupled receptors (EP1–4). The ability of PGE2 to regulate human Treg differentiation has not yet been reported. In the current study, we investigated the effects of PGE2 on the differentiation of naïve T cells from healthy and RA patients into Treg cells and the intracellular signaling involved in this process in vitro. Our data indicate that PGE2 negatively influenced the percentage of Treg cells and Foxp3 mRNA expression. The regulatory effects of PGE2 were associated with increased intracellular cAMP levels and PKA activity. EP2 receptors may mediate the inhibitory role of PGE2, since PGE2 actions were mimicked by EP2 agonist (Butaprost) and cAMP agonist (Sp-8-CPT-cAMPS) but were reversed by an EP2 antagonist (PF-04418948) and a PKA inhibitor (H-89). PGE2 negatively modulated the expression of cytotoxic T lymphocyte antigen-4 (CTLA-4) and glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR), as well as the production of interleukin (IL)-10 by Treg cells via EP2 receptors and cAMP/PKA signaling. All these findings indicate that PGE2 can inhibit Treg differentiation mediated through the EP2-cAMP/PKA signaling pathway, and suggest novel immune-based therapies for use in RA treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call