Abstract

We examined changes in electrical and morphological properties of rat osteoclasts in response to prostaglandin (PG)E(2). PGE(2) (>10 nM) stimulated an outwardly rectifying Cl(-) current in a concentration-dependent manner and caused a long-lasting depolarization of cell membrane. This PGE(2)-induced Cl(-) current was reversibly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), and tamoxifen. The anion permeability sequence of this current was I(-) > Br(-) approximately Cl(-) > gluconate(-). When outwardly rectifying Cl(-) current was induced by hyposmotic extracellular solution, no further stimulatory effect of PGE(2) was seen. Forskolin and dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) mimicked the effect of PGE(2). The PGE(2)-induced Cl(-) current was inhibited by pretreatment with guanosine 5'-O-2-(thiodiphosphate) (GDPbetaS), Rp-adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS), N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide dihydrochloride (H-89), and protein kinase A inhibitors. Even in the absence of nonosteoclastic cells, PGE(2) (1 microM) reduced cell surface area and suppressed motility of osteoclasts, and these effects were abolished by Rp-cAMPS or H-89. PGE(2) is known to exert its effects through four subtypes of PGE receptors (EP1-EP4). EP2 and EP4 agonists (ONO-AE1-259 and ONO-AE1-329, respectively), but not EP1 and EP3 agonists (ONO-DI-004 and ONO-AE-248, respectively), mimicked the electrical and morphological actions of PGE(2) on osteoclasts. Our results show that PGE(2) stimulates rat osteoclast Cl(-) current by activation of a cAMP-dependent pathway through EP2 and, to a lesser degree, EP4 receptors and reduces osteoclast motility. This effect is likely to reduce bone resorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.