Abstract

Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic cell-restricted member of the Ste20 serine/threonine kinase super family. We recently reported that the immunosuppressive eicosanoid, prostaglandin E(2) (PGE(2)), is capable of activating HPK1 in T cells. In this report, we demonstrate that unlike the TCR-induced activation of HPK1 kinase activity, the induction of HPK1 catalytic activity by PGE(2) does not require the presence of phosphotyrosine-based signaling molecules such as Lck, ZAP-70, SLP-76, and Lat. Nor does the PGE(2)-induced HPK1 activation require the intermolecular interaction between its proline-rich regions and the SH3 domain-containing adaptor proteins, as required by the signaling from the TCR to HPK1. Instead, our study reveals that PGE(2) signal to HPK1 via a 3' -5 '-cyclic adenosine monophosphate-regulated, PKA-dependent pathway. Consistent with this observation, changing the serine 171 residue that forms the optimal PKA phosphorylation site within the "activation loop" of HPK1 to alanine completely prevents this mutant from responding to PGE(2)-generated stimulation signals. Moreover, the inability of HPK1 to respond to PGE(2) stimulation in PKA-deficient S49 cells further supports the importance of PKA in this signaling pathway. We speculate that this unique signaling pathway enables PGE(2) signals to engage a proven negative regulator of TCR signal transduction pathway and uses it to inhibit T cell activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.