Abstract

Prostaglandin F 2α (PGF 2α), an arachidonic acid metabolism product of the prostaglandin synthetase pathway, is synthesized and released from the endometrium during luteolysis in nonpregnant animals. When proper conception occurs, the synthesis and release pattern is changed to maintain the corpus luteum (CL) function. The biosynthesis of prostaglandins in the bovine endometrium was highest in the microsomes but of low order. In nonpregnancy, the formation of prostaglandins from labelled precursor acid was higher than in pregnancy. Besides the prostaglandin synthetase, an inhibiting activity on the conversion of arachidonic acid to prostaglandins was found in both the nonpregnant and pregnant endometrium. During luteolysis (Day 17), a low inhibiting capacity was seen in comparison with other days of the estrous cycle (Days 1, 4 and 14). The inhibitory capacity was very high on Days 16 to 20, 25, and 31 of pregnancy. In the nonpregnant endometrium at Day 17, a very low inhibitor potency, calculated as IC 50 values, was found both in the cytoplasma and in the microsomes, whereas during early pregnancy (Days 17, 18, and 20) both cytoplasma and microsomes possessed very high inhibitor potency. This finding indicates that the bovine endometrium contains both prostaglandin synthetase and an unknown potent inhibitor of prostaglandin biosynthesis that regulates prostaglandin biosynthesis both during the estrous cycle and early pregnancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.