Abstract

In this study, we investigated the prospect of calibrating probabilistic forecasts of surface air temperature (SAT) over South Korea by using Bayesian model averaging (BMA). We used 63 months of simulation results from four regional climate models (RCMs) with two boundary conditions (NCEP-DOE and ERA-interim) over the CORDEX East Asia. Rank histograms and residual quantile-quantile (R-Q-Q) plots showed that the simulation skills of the RCMs differ according to season and geographic location, but the RCMs show a systematic cold bias irrespective of season and geographic location. As a result, the BMA weights are clearly dependent on geographic location, season, and correlations among the models. The one-month equal weighted ensemble (EWE) outputs for the 59 stations over South Korea were calibrated using the BMA method for 48 monthly time periods based on BMA weights obtained from the previous 15 months of training data. The predictive density function was calibrated using BMA and the individual forecasts were weighted according to their performance. The raw ensemble forecasts were assessed using the flatness of the rank histogram and the R-Q-Q plot. The results showed that BMA improves the calibration of the EWE and the other weighted ensemble forecasts irrespective of season, simulation skill of the RCM, and geographic location. In addition, deterministic-style BMA forecasts usually perform better than the deterministic forecast of the single best member.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.