Abstract

AbstractSounding of nonprecipitating clouds with the 10-cm wavelength Weather Surveillance Radar-1988 Doppler (WSR-88D) is discussed. Readily available enhancements to signal processing and volume coverage patterns of the WSR-88D allow observations of a variety of clouds with reflectivities as low as −25 dBZ (at a range of 10 km). The high sensitivity of the WSR-88D, its wide velocity and unambiguous range intervals, and the absence of attenuation allow accurate measurements of the reflectivity factor, Doppler velocity, and spectrum width fields in clouds to ranges of about 50 km. Fields of polarimetric variables in clouds, observed with a research polarimetric WSR-88D, demonstrate an abundance of information and help to resolve Bragg and particulate scatter. The scanning, Doppler, and polarimetric capabilities of the WSR-88D allow real-time, three-dimensional mapping of cloud processes, such as transformations of hydrometeors between liquid and ice phases. The presence of ice particles is revealed by high differential reflectivities and the lack of correlation between reflectivity and differential reflectivity in clouds in contrast to that found for rain. Pockets of high differential reflectivities are frequently observed in clouds; maximal values of differential reflectivity exceed 8 dB, far above the level observed in rain. The establishment of the WSR-88D network consisting of 157 polarimetric radars can be used to collect cloud data at any radar site, making the network a potentially powerful tool for climatic studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call