Abstract

Despite encouraging results, obtained at pilot tests, attempts to substitute the stopper facilities by sliding gates at casting ladles of small capacity, used at foundries of machine-building plants, did not result in their implementation in industry. The problems of transferring casting ladles with a capacity of up to 10 tons to continuous casting of steel, due to the peculiarities of their operation under conditions of obtaining low-weight castings, were considered. Priority problems were noted, the successful solution of which will confirm the prospects of using slide gates in foundry. The main requirements for a steel tapping gate system of a casting ladle of small tonnage are as follows: autonomy of the power supply of the shutter drive, eliminating the need to move flexible hoses over a long distance along the working platform; guaranteed start of casting in normal mode without burning the channel with oxygen; the stability of the node pressing the refractory plates of the slide gate to high temperatures in the absence of forced air cooling; the possibility of an active influence on reducing the intensity of the process of overgrowing of the steel outlet of the ladle in the course of filling molds. As a constructive solution aimed at fulfilling the indicated conditions, it was proposed to use a balancer-type cartridge valve equipped with a modernized electromechanical actuator and auxiliary devices for starting casting in normal mode due to mechanical destruction of the crust at the entrance to the steel outlet channel, as well as heating its walls in the closed state when moving the ladle from one form to another. It was recognized that participation on a parity basis in the creation of a promising sliding gate system for foundry ladles with a capacity of up to 10 tons of several development organizations with practical experience in this technical field is worthwhile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.