Abstract

The acceptance of battery electric vehicles (BEVs) is continuously increasing to mitigate CO2 emissions, resulting in an increase in the future material demand for LIBs. Therefore, the proper handling of End-of-life (EOL) BEV batteries requires careful attention to mitigate the supply chain issues for future LIBs materials, especially in Asia. A system dynamics model assessment was performed to evaluate the EOL of LIBs by considering the dynamic lifespan, recovery rate, and economic value under three growth rate scenarios in Asia from 2022 to 2030, depending on the battery chemistry over time. We find that comparing three different scenarios to materials demand, the result showed that materials demand for LIBs is greater in higher scenarios as compared with lower and reference scenarios. Moreover, in the low scenario, the nickel demand and recovery from end-of-life LIBs BEVs will achieve 244.0 and 43.28 kt in 2030. Based on the dynamic economic evaluation, an overall, higher potential economic value of all materials would achieve around 1471 million USD in 2030 in the low scenario. This study manifested that recycling LIBs materials has enormous economic potential and would be a step towards economic sustainability, especially in Asia in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.