Abstract

This study investigates the prospect of discovering strongly interacting gluinos in different multi-lepton channels with lepton multiplicities greater than or equal to 2 at LHC RUN-III, considering several pMSSM scenarios. The effectiveness of the multivariate analysis (MVA) method with the boosted decision tree (BDT) algorithm is explored to obtain a better significance for different models. Promising results are obtained for the 3-lepton channels, indicating that the use of MVA methods can improve the sensitivity of the search for gluinos at LHC RUN-III. The study probes the multi-lepton signatures arising from gluinos via intermediate eweakinos and sleptons at an early stage of the LHC RUN-III. The heavier eweakinos can give rise to three or four lepton signals, in which the squark hierarchy between the L and R types plays a crucial role. The study considers two sets of benchmark points that satisfy all the collider constraints obtained from the LHC RUN-II data. Moreover, these sets of benchmark points are mostly consistent with WMAP/PLANCK data and the muon (g-2) constraint. The corresponding results from the MVA technique demonstrate that, even for an integrated luminosity of 270 , the 5 σ discovery prospect of for TeV in the wino type model is promising. The study also presents various other models that may emerge at the early stage of LHC RUN-III. Wino type models in the scenario where left squarks are light and right squarks are heavy exhibit the best prospect of discovering gluinos in multi-lepton channels in the LHC RUN-III experiment. The findings of this study provide crucial insights into the potential discovery of gluinos in multi-lepton channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call