Abstract

Surface Enhanced Raman Scattering (SERS) is a field of research that has shown promising application in the analysis of various substrate molecules by means of rough metallic surfaces. In directing the enhancement of substrate molecules in micro and nano-molar concentrations, plasmonic coupling of metal nanoparticles (NPs), morphology of metal NPs and the closely arrangement of rough metal surfaces that produces ‘hot spots’ can effectively increase the so-called enhancement factor (EF) that will be applicable in various fields. As the mechanistic aspects are still not clear, research has been triggered all over the world for the past two decades to have a clear understanding in chemical and electromagnetic effects. As the reproducibility of intensity of signals at low concentrations of probe molecules is of a big concern, metal NPs with various scaffolds were prepared and recently bio-molecule, DNA has been studied and showed promising advantages. This review first time highlights metal NPs with DNA interface as an effective rough metallic surface for SERS with high intensity and also with better reproducibility. Based on this review, similar kinds of scaffolds like DNA can be used to further analyze SERS activities of various metal NPs with different morphologies to have high intense signals at low concentrations of probe molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.