Abstract

This research deals with the prospects for application of modern nanomaterials as exemplified by carbon nanotubes for development of new classes of precision measuring instruments or for significant improvement of the performance of existing sensors and systems based on sensors. Carbon nanotubes have been known since the end of the 20th century, but production of high-quality carbon nanotubes on a commercial scale has become possible relatively recently, owing, inter alia, to researches of Russian scientists. Carbon nanotubes have unique properties which hold much promise for their use in different areas of science and technology. Thus, use of nanotubes in precision instrument engineering can solve a number of problems, such as increase in reliability, accuracy, durability, weight and size reduction, etc. Fiber optic gyroscopes based on microstructured optical fiber are considered in this research as an example to demonstrate that use of carbon nanotubes allows significant reduction of the temperature differences in the fiber and that such reduction, in its turn, leads to lower dependence of the FOG characteristics on the temperature effects under actual operating conditions. A mathematical model of the equivalent thermal conductivity of a microstructured fiber loop, all or some channels of which are filled with carbon nanotubes, has been developed in this research. A comparative analysis has been made of the distribution of heat in coils with the considered and traditional fibers under different temperature effects – harmonic, random and stepped.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call