Abstract
The paper presents an overview of methods for obtaining perovskite structure titanates and doping them with rare-earth elements. The results of scientific research conducted by authors from different countries related to the study of the effect of doping perovskite structure titanates with rare-earth elements on their electromagnetic properties are discussed. The paper also comprises information on the use of perovskite structure titanates in various industries. As exemplified by barium titanate (BaTiO3), a comparative analysis of some morphological properties (particle size, structure) and electromagnetic characteristics (dielectric constant, Curie temperature, modulus of longitudinal oscillations (d33)) of powders obtained (and doped) by different methods is carried out. Techniques for various BaTiO3 preparation methods such as solvothermic, hydrothermal, sol-gel, chemical deposition, and solid-phase sintering are described. The paper provides the results of studies on the effect of changes in process parameters (temperature, pH, composition of the initial mixture of materials and concentration of reagents) on the phase, morphology and BaTiO3particle formation rate in hydrothermal synthesis (using BaCl2, TiCl4and NaOH as initial materials). In addition, experiments were conducted to study the effect of microwave radiation power in ВаСОз and ТЮ2 solid-phase sintering on the dielectric and ferroelectric properties of ВаТЮз ceramics. The analysis of methods for obtaining BaTiO3 and doping it with rare-earth elements found that at present the hydrothermal method and the method of solid-phase sintering (including with microwave radiation) can be regarded as advanced technologies for obtaining perovskite structure materials with predetermined properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.