Abstract

Encouraging results have been reported for the use of transcranial magnetic stimulation-based nerve stimulation in studies of the mechanisms of neurological regulation, nerve injury repair, and nerve localization. However, to date, there are only a few reviews on the use of transcranial magnetic stimulation for diabetic neuropathy. Patients with diabetic neuropathy vary in disease progression and show neuropathy in the early stage of the disease with mild symptoms, making it difficult to screen and identify. In the later stage of the disease, irreversible neurological damage occurs, resulting in treatment difficulties. In this review, we summarize the current state of diabetic neuropathy research and the prospects for the application of transcranial magnetic stimulation in diabetic neuropathy. We review significant studies on the beneficial effects of transcranial magnetic stimulation in diabetic neuropathy treatment, based on the outcomes of its use to treat neurodegeneration, pain, blood flow change, autonomic nervous disorders, vascular endothelial injury, and depression. Collectively, the studies suggest that transcranial magnetic stimulation can produce excitatory/inhibitory stimulation of the cerebral cortex or local areas, promote the remodeling of the nervous system, and that it has good application prospects for the localization of the injury, neuroprotection, and the promotion of nerve regeneration. Therefore, transcranial magnetic stimulation is useful for the screening and early treatment of diabetic neuropathy. Transcranial magnetic stimulation can also alleviate pain symptoms by changing the cortical threshold and inhibiting the conduction of sensory information in the thalamo-spinal pathway, and therefore it has therapeutic potential for the treatment of pain and pain-related depressive symptoms in patients with diabetic neuropathy. Additionally, based on the effect of transcranial magnetic stimulation on local blood flow and its ability to change heart rate and urine protein content, transcranial magnetic stimulation has potential in the treatment of autonomic nerve dysfunction and vascular injury in diabetic neuropathy. Furthermore, oxidative stress and the inflammatory response are involved in the process of diabetic neuropathy, and transcranial magnetic stimulation can reduce oxidative damage. The pathological mechanisms of diabetic neuropathy should be further studied in combination with transcranial magnetic stimulation technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.