Abstract

Sagittarius A*, the supermassive compact object at the center of the Galaxy, exhibits outbursts in the near infrared and X-ray domains. These flares are likely due to energetic events very close to the central object, on a scale of a few Schwarzschild radii. Optical interferometry will soon be able to provide astrometry with an accuracy of this order (~10 muas). In this article we use recent photometric near infrared data observed with the adaptive optics system NACO at the Very Large Telescope combined with simulations in order to deploy a method to test the nature of the flares and to predict the possible outcome of observations with the Very Large Telescope Interferometer. To accomplish this we implement a hot spot model and investigate its appearance for a remote observer in terms of light curves and centroid tracks, based on general relativistic ray tracing methods. First, we use a simplified model of a small steady source in order to investigate the relativistic effects qualitatively. A more realistic scenario is then being developed by fitting our model to existing flare data. While indications for the spin of the black hole and multiple images due to lensing effects are marginal in the light curves, astrometric measurements offer the possibility to reveal these high-order general relativistic effects. This study makes predictions on these astrometric measurements and leads us to the conclusion that future infrared interferometers will be able to detect proper motion of hot spots in the vicinity of Sagittarius A*.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.