Abstract
In recent years, extraordinary progress has been made in a broad range of reproductive technologies, including spermatogonial transplantation in the male. However, effective procedures for the complete recapitulation of spermatogenesis in vitro, including meiosis, have remained elusive. Such procedures have the potential to facilitate (1) mechanistic studies of spermatogenesis, (2) directed genetic modification of the male germ line, and (3) treatment of male factor infertility. Early studies demonstrated the importance of germ cell–Sertoli association for germ cell survival in vitro. Recently, evidence for male germ cell survival and progression through meiosis has been reported for the rat, mouse, and man. We demonstrated the expression of spermatid-specific genes (protamine and transition protein 1) by alginate-encapsulate neonatal bull testis cells after 10 weeks in culture, suggesting that meiosis had occurred. Although identifiable germ cells in these cultures were very sparse, some indication of acrosome development was observed. Following round spermatid injection (ROSI) with presumptive spermatids produced in vitro, 50% of blastocysts produced were diploid and 37% were Y-chromosome positive. Improved culture conditions, which promote germ cell survival, differentiation, and proliferation, are essential for in vitro spermatogenesis (IVS) to become a useful technology. Other approaches to male germ cell manipulation and spermatid production are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.