Abstract

This study investigated the feasibility of utilizing paper sludge (PS) as feedstock in the production of composite boards that are lightweight, durable and environmentally friendly. PS samples were collected from recycled newsprint (RN), corrugated recycled (CR) and virgin pulp (VP) pulping mills in South Africa. The PS was dried and mixed with magnesium phosphate cement to produce boards in a central composite design. Three different fillers including fly ash, calcium carbonate and silica fume were also added to the mix as binder replacement. The PS was characterized before use, and the produced composite board was evaluated for mechanical and physical properties. The boards produced had medium to high density (0.52—1.12 g/cm3) that could be used for non-structural interior applications. The results showed that boards containing RN had the highest mean value for modulus of elasticity (MOE) of 769 MPa. The mean MOE for boards containing CR- and VP-PS was 357 and 411 MPa, respectively. Calcium carbonate had the best effect on the board properties. Techno-economic analysis was simulated for four different types of feedstock scenarios at different locations including a combined scenario. Sensitivity analysis revealed that decreased feedstock cost resulted in decreased minimum required selling price. The analysis also revealed that the combined scenario proved to be the most cost-effective and profitable option for the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.