Abstract

The unknown neutrino mass hierarchy—whether the ν3mass eigenstate is the heaviest or the lightest—represents a major gap in our knowledge of neutrino properties. Determining the hierarchy is a critical step toward further precision measurements in the neutrino sector. The hierarchy is also central to interpreting the next generation of neutrinoless double-β decay results, plays a role in numerous cosmological and astrophysical questions, and serves as a powerful model discriminant for theories of neutrino mass generation and unification. Various current and planned experiments claim sensitivity for establishing the neutrino mass hierarchy. I review the most promising of these here, paying special attention to points of concern and consolidating the projected sensitivities into an outlook for the years ahead.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.