Abstract

AbstractEfficient visible luminescence from porous Si requires the 3-dimensional confinement of charges in structures with typical ∼3nm size. Such microporously etched Si acts as an intrinsic wide-gap material and is highly resistive. The material does not have the good transport properties consistent with an efficient electrical excitation. We instead suggest to employ mesoporously etched, p+-type Si with its better conductivity in electroluminescence application. The material luminesces in two spectral bands centered about 0.8eV and 1.0eV in the infrared. Both emissions originate from surface-bound states. We report on the temperature dependence of luminescence, on transport and first attempts to generate infrared light by the injection of electrical current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.