Abstract

Extravehicular activity (EVA) will play an important role as humans begin exploring Mars, which, in turn, will drive the need for new enabling technologies. For example, space suit heat rejection is currently achieved through the sublimation of ice water to the vacuum of space, a mechanism widely regarded as not feasible for use in Martian environment pressure ranges. As such, new, more robust thermal control mechanisms are needed for use under these conditions. Here, we evaluate the potential of utilizing a full suit, variable emittance radiator as the primary heat rejection mechanism during Martian surface EVAs. Diurnal and seasonal environment variations are considered for a latitude 27.5°S Martian surface exploration site. Surface environmental parameters were generated using the same methods used in the initial selection of the Mars Science Laboratory's initial landing site. This evaluation provides theoretical emittance setting requirements to evaluate the potential of the system's performance in a Mars environment. Parametric variations include metabolic rate, wind speed, radiator solar absorption, and total radiator area. The results showed that this thermal control architecture is capable of dissipating a standard nominal EVA metabolic load of 300 W in all the conditions with the exception of summer noon hours, where a supplemental heat rejection mechanism with a 250 W capacity must be included. These results can be used to identify when conditions are most favorable for conducting EVAs. The full suit, variable emittance radiator architecture provides a viable means of EVA thermal control on the Martian surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call