Abstract

ABSTRACT X-ray polarimetry can potentially constrain the unknown geometrical shape of active galactic nucleous (AGN) coronae. We present simulations of the X-ray polarization signal expected from AGN coronae, assuming three different geometries, namely slab, spherical, and conical. We use the fully relativistic Monte Carlo Comptonization code monk to compute the X-ray polarization degree and angle. We explore different coronal parameters such as shape, size, location, and optical depth. Different coronal geometries give a significantly different X-ray polarization signal. A slab corona yields a high polarization degree, up to 14 per cent depending on the viewing inclination; a spherical corona yields low values, about 1–3 per cent, while a conical corona yields intermediate values. We also find a difference of 90 degrees in polarization angle between the slab corona and the spherical or conical coronae. Upcoming X-ray polarimetry missions like IXPE will allow us to observationally distinguish among different coronal geometries in AGNs for the first time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.