Abstract

Future neutrino detectors will obtain high-statistics data from a nearby core-collapse supernova. We study the mixing with eV-mass sterile neutrinos in a supernova environment and its effects on the active neutrino fluxes as detected by Hyper-Kamiokande and IceCube. Using a Markov Chain Monte Carlo analysis, we make projections for how accurately these experiments will measure the active-sterile mixing angle θs given that there are substantial uncertainties on the expected luminosity and spectrum of active neutrinos from a galactic supernova burst. We find that Hyper-Kamiokande can reconstruct the sterile neutrino mixing and mass in many different situations, provided the neutrino luminosity of the supernova is known precisely. Crucially, we identify a degeneracy between the mixing angle and the overall neutrino luminosity of the supernova. This means that it will only be possible to determine the luminosity if the presence of sterile neutrinos with θs ≳ 0.1̂ can be ruled out independently. We discuss ways in which this degeneracy may be broken in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.