Abstract

Gene and antisense/ribozyme therapy possesses tremendous potential for the successful treatment of genetically based diseases, such as cancer. Several cancer gene therapy strategies have already been realized in vitro, as well as in vivo. A few have even reached the stage of clinical trials, most of them phase I, while some antisense strategies have advanced to phase II and III studies. Despite this progress, a major problem in exploiting the full potential of cancer gene therapy is the lack of a safe and efficient delivery system for nucleic acids. As viral vectors possess toxicity and immunogenicity, non-viral strategies are becoming more and more attractive. They demonstrate adequate safety profiles, but their rather low transfection efficiency remains a major drawback. This review will introduce the most important cationic polymers used as non-viral vectors for gene and oligonucleotide delivery and will summarize strategies for the targeting of these agents to cancer tissues. Since the low efficiency of this group of vectors can be attributed to specific systemic and subcellular obstacles, these hurdles, as well as strategies to circumvent them, will be discussed. Local delivery approaches of vector/DNA complexes will be summarized and an overview of the principles of anticancer gene and antisense/ribozyme therapy as well as an outline of ongoing clinical trials will be presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.