Abstract

Environmental stressors such as salinity, drought, high temperature, high rainfall, etc. have already demonstrated the negative impacts on plant growth and development and thereby limiting productivity of the crops. Therefore, in the time to come, more sustainable efforts are required in agricultural practices to ensure food production and security under such adverse environmental conditions. A most promising and eco-friendly way to achieve this goal would be to apply biostimulants to address the environmental concerns. Non-microbial biostimulants such as humic substances (HA), protein hydrolysate, plant-based products and seaweed extracts (SWE), etc. and/or microbial inoculants comprising of plant growth-promoting microbes such as arbuscular mycorrhizal fungi (AMF), fluorescent and non-fluorescentPseudomonas, Trichodermaspp.,Bacillusspp. etc. have tremendous potentiality to enhance plant growth, flowering, crop productivity, nutrient use efficiency (NUE) and translocation, as well as enhancing tolerance to a wide range of abiotic stresses by modifying physiological, biological and biochemical processes of the crop-plants. Similarly, application techniques and timing are also important to achieve the desired results. In this article we discussed the prospects of using seaweed, microbial, and plant-based biostimulants either individually or in combination for managing environmental stresses to achieve food security in a sustainable way. Particular attention was given to the modifications that take place in plant's physiology under adverse environmental conditions and how different biostimulants re-program the host's physiology to withstand such stresses. Additionally, we also discussed how application of biostimulants can overcome the issue of nutrient deficiency in agricultural lands and improve their use efficiency by crop plants.

Highlights

  • Biostimulants are natural or synthetic products derived from plants and/or microbes, and have the potential to promote the physiological processes of plants benefitting nutrient uptake and translocation, as well as enhanced tolerance to several abiotic stresses

  • The effect of seaweeds extracts as biostimulants has recently been reported by many researchers, which promotes the commercialization of seaweeds and their purified compounds such as different carbohydrates including alginates, fucoidan, carrageenans and some other plant hormones that are significantly associated with plant growth (Battacharyya et al, 2015)

  • The biostimulants including natural substances and microbial inoculants are a novel category of agricultural inputs having great tendency to stimulate better N uptake, plant-growth and tolerance to different abiotic stresses

Read more

Summary

INTRODUCTION

Biostimulants are natural or synthetic products derived from plants and/or microbes, and have the potential to promote the physiological processes of plants benefitting nutrient uptake and translocation, as well as enhanced tolerance to several abiotic stresses. These products can be directly applied to seeds, seedlings and plants or can be introduced into the rhizosphere of crops with the goal to improve plant productivity and growth in a sustainable way under environmental stresses. /or microbial components comprising of PGPMs such as arbuscular mycorrhizal fungi, fluorescent Pseudomonas, Trichoderma spp., Bacillus spp. etc They all have shown tremendous potentiality to enhance plant growth, flowering, crop productivity, nutrient use efficiency (NUE) and translocation, as well as enhancing tolerance to a wide range of abiotic stresses by modifying physiological, biological and biochemical processes of the crop-plants

TYPES OF BIOSTIMULANTS AND THEIR
Microbial Biostimulants
Maintain iron homeostasis
Rhizobium leguminosarum
Plant growth and stress tolerance
Other Important Beneficial Microbes and Their
TOLERANCE TO ABIOTIC STRESSES
IMPROVING NUTRIENT USE EFFICIENCY
Findings
CONCLUSION AND FUTURE
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.