Abstract

Recent guidelines recommend a risk-adjusted, non-invasive work-up in patients presenting with chest discomfort to exclude coronary artery disease (CAD). However, a risk-adjusted diagnostic approach remains challenging in clinical practice. An acoustic detection device for analyzing micro-bruits induced by stenosis-generated turbulence in the coronary circulation has shown potential for ruling out CAD in patients with low-to-intermediate likelihood. We examined the diagnostic value of this acoustic detection system in a high-prevalence cohort. In total, 226 patients scheduled for clinically indicated invasive coronary angiography (ICA) were prospectively enrolled at two centers and examined using a portable, acoustic detection system. The acoustic analysis was performed in double-blinded fashion prior to quantitative ICA and following percutaneous coronary intervention (PCI). An acoustic detection result (CAD score) was obtained in 94% of all patients. The mean baseline CAD score was 41.2 ± 11.9 in patients with obstructive CAD and 33.8 ± 13.4 in patients without obstructive CAD (p < 0.001). ROC analysis revealed an AUC of 0.661 (95% CI 0.584-0.737). Sensitivity was 97.6% (95% confidence interval (CI) 91.5-99.7%), specificity was 14.5% (CI 9.0-21.7%), negative predictive value was 90.5% (CI 69.6-98.8%), and positive predictive value was 41.7% (CI 34.6-49.0%). Following PCI, the mean CAD score decreased from 40.5 ± 11.2 to 38.3 ± 13.7 (p = 0.039). Using an acoustic detection device identified individuals with CAD in a high-prevalence cohort with high sensitivity but relatively low specificity. The negative predictive value was within the predicted range and may be of value for a fast rule-out of obstructive CAD even in a high-prevalence population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call