Abstract

BackgroundThere is limited clinical or epidemiological knowledge regarding Bartonella infection in cats, and no serological studies have compared the presence of antibodies against different Bartonella species. Moreover, there are limited feline Bartonella studies investigating co-infections with other vector-borne pathogens and the associated risk factors. Therefore, the objective of this study was to investigate Bartonella spp. infections and co-infections with other pathogens in cats from Barcelona (Spain) based on serological and/or molecular techniques and to determine associated risk factors.MethodsWe studied colony and owned cats (n = 135). Sera were tested for Bartonella henselae-, Bartonella quintana-, and Bartonella koehlerae-specific antibodies using endpoint in-house immunofluorescence antibody assays. Bartonella real-time PCR (qPCR) and conventional PCR (cPCR) were performed. In addition, cPCR followed by DNA sequencing was performed for other pathogenic organisms (Anaplasma, Babesia, Cytauxzoon, Ehrlichia, Hepatozoon, hemotropic Mycoplasma, and Theileria spp.).ResultsFrom 135 cats studied, 80.7% were seroreactive against at least one Bartonella species. Bartonella quintana, B. koehlerae, and B. henselae seroreactivity was 67.4, 77.0, and 80.7%, respectively. Substantial to almost perfect serological agreement was found between the three Bartonella species. Colony cats were more likely to be Bartonella spp.-seroreactive than owned cats. Moreover, cats aged ≤ 2 years were more likely to be Bartonella spp.-seroreactive. Bartonella spp. DNA was detected in the blood of 11.9% (n = 16) of cats. Cats were infected with B. henselae (n = 12), B. clarridgeiae (n = 3), and B. koehlerae (n = 1). Mycoplasma spp. DNA was amplified from 14% (n = 19) of cat blood specimens. Cats were infected with Mycoplasma haemofelis (n = 8), Candidatus M. haemominutum (n = 6), Candidatus Mycoplasma turicensis (n = 4), and Mycoplasma wenyonii (n = 1). Anaplasma, Babesia, Cytauxzoon, Ehrlichia spp., Hepatozoon, and Theileria spp. DNA was not amplified from any blood sample. Of the 16 Bartonella spp.-infected cats based on PCR results, six (37%) were co-infected with Mycoplasma spp.ConclusionsBartonella spp. and hemoplasma infections are prevalent in cats from the Barcelona area, whereas infection with Anaplasma spp., Babesia, Cytauxzoon, Ehrlichia spp., Hepatozoon, and Theileria infections were not detected. Co-infection with hemotropic Mycoplasma appears to be common in Bartonella-infected cats. To our knowledge, this study is the first to document M. wenyonii is infection in cats.Graphical

Highlights

  • There is limited clinical or epidemiological knowledge regarding Bartonella infection in cats, and no serological studies have compared the presence of antibodies against different Bartonella species

  • Co-infection with hemotropic Mycoplasma appears to be common in Bartonella-infected cats

  • Cat age ranged from 4 months to 7 years, with a median age of 1.2 years

Read more

Summary

Introduction

There is limited clinical or epidemiological knowledge regarding Bartonella infection in cats, and no serological studies have compared the presence of antibodies against different Bartonella species. The spectrum of disease manifestations associated with Bartonella spp. infections in cats continues to expand [8], despite the fact that it is not easy to demonstrate an association between clinical signs, laboratory abnormalities, and Bartonella spp. infection [9, 10]. The majority of acute infections caused by Bartonella spp. are thought to be self-limiting in cats [12], persistent infections can be associated with a wide variety of clinical signs and abnormalities. These manifestations in cats can range from intra- or extra-erythrocytic subclinical bacteremia to fever of unknown origin, lymphadenomegaly, endocarditis, myocarditis, ocular disease (neuroretinitis, uveitis), skin inflammation, and other less common disease manifestations [13, 14]. Factors that influence symptomatology include virulence differences among Bartonella spp. and strains, the mode of transmission, differences in the host immune response and clinical status (comorbidities), concurrent infectious or noninfectious diseases, bacterial load, therapeutic- or infection-induced immunosuppression, and malnutrition [15, 16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.