Abstract

This study predicted dapaconazole clinical drug−drug interactions (DDIs) over the main Cytochrome P450 (CYP) isoenzymes using static (in vitro to in vivo extrapolation equation, IVIVE) and dynamic (PBPK model) approaches. The in vitro inhibition of main CYP450 isoenzymes by dapaconazole in a human liver microsome incubation medium was evaluated. A dapaconazole PBPK model (Simcyp version 20) in dogs was developed and qualified using observed data and was scaled up for humans. Static and dynamic models to predict DDIs following current FDA guidelines were applied. The in vitro dapaconazole inhibition was observed for all isoforms investigated, including CYP1A2 (IC50 of 3.68 µM), CYP2A6 (20.7 µM), 2C8 (104.1 µM), 2C9 (0.22 µM), 2C19 (0.05 µM), 2D6 (0.87 µM), and 3A4 (0.008−0.03 µM). The dynamic (PBPK) and static DDI mechanistic model-based analyses suggest that dapaconazole is a weak inhibitor (AUCR > 1.25 and <2) of CYP1A2 and CYP2C9, a moderate inhibitor (AUCR > 2 and <5) of CYP2C8 and CYP2D6, and a strong inhibitor (AUCR ≥ 5) of CYP2C19 and CYP3A, considering a clinical scenario. The results presented may be a useful guide for future in vivo and clinical dapaconazole studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.