Abstract

Electrochemical oxidation (ECO) is a promising process that exhibits excellent performance in various wastewater treatment applications. Herein, the influence of operating parameters on the reduction of energy requirements for the electrochemical oxidation of various wastewater resources was investigated. The results revealed that pH significantly reduces the energy required for the removal of total nitrogen, unlike the chemical oxygen demand (COD) and NH3 removal. Electrochemically-based hybrid technologies and low current densities also resulted in a decrease in the required energy. Additionally, pollutants with high concentrations had a positive effect on the electrical energy required. Besides, the comparative performance of three advanced electrochemical oxidation processes was reported as technological alternatives for the treatment of reverse osmosis (RO) concentrate applied to membrane bioreactor (MBR) effluent in livestock wastewater. The results revealed that advanced electrochemical oxidation-peroxide is the most effective process for treating RO concentrate among all advanced ECO technologies. The removal rates for total organic carbon (TOC) and COD were 82% and 96%, respectively, after only 60 min of treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call