Abstract

Prospective memory (PM), which can be understood as the processes involved in realizing a delayed intention, is consistently found to be impaired after a traumatic brain injury (TBI). Although PM can be empirically dissociated from retrospective memory, it inherently involves both a prospective component (i.e., remembering that an action needs to be carried out) and retrospective components (i.e., remembering what action needs to be executed and when). This study utilized a multinomial processing tree model to disentangle the prospective (that) and retrospective recognition (when) components underlying PM after moderate-to-severe TBI. Seventeen participants with moderate to severe TBI and 17 age- and education-matched control participants completed an event-based PM task that was embedded within an ongoing computer-based color-matching task. The multinomial processing tree modeling approach revealed a significant group difference in the prospective component, indicating that the control participants allocated greater preparatory attentional resources to the PM task compared to the TBI participants. Participants in the TBI group were also found to be significantly more impaired than controls in the when aspect of the retrospective component. These findings indicated that the TBI participants had greater difficulty allocating the necessary preparatory attentional resources to the PM task and greater difficulty discriminating between PM targets and nontargets during task execution, despite demonstrating intact posttest recall and/or recognition of the PM tasks and targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call