Abstract
This study examined the effects of metastasis-directed stereotactic body radiation therapy (mdSBRT) on CD8+ T-cell subpopulations and correlated post-mdSBRT immunophenotypic responses with clinical outcomes in patients with oligometastatic prostate cancer (OPCa). Peripheral blood mononuclear cells were prospectively isolated from 37 patients with OPCa (≤3 metastases) who were treated with mdSBRT. Immunophenotyping identified circulating CD8+ T-cell subpopulations, including tumor-reactive (TTR), effector memory, central memory (TCM), effector, and naïve Tcells from samples collected before and after mdSBRT. Univariate Cox proportional hazards regression was used to assess whether changes in these T-cell subpopulations were potential risk factors for death and/or progression. The Kaplan-Meier method was used for survival. Cumulative incidence for progression and new distant metastasis weas estimated, considering death as a competing risk. Median follow-up was 39months (interquartile range, 34-43). Overall survival at 3years was 78.2%. Cumulative incidence for local progression and new distant metastasis at 3years was 16.5% and 67.6%, respectively. Between baseline and day 14 after mdSBRT, an increase in the TCM cell subpopulation was associated with the risk of death (hazard ratio, 1.22 [95% confidence interval, 1.02-1.47]; P=.033), and an increase in the TTR cell subpopulation was protective against the risk of local progression (hazard ratio, 0.80 [95% confidence interval, 0.65-0.98]; P=.032). An increase in the TTR cell subpopulation was protective against the risk of disease progression, and an increase in the TCM cell subpopulation was associated with the risk of death in patients with OPCa treated with mdSBRT. Disease control may be further improved by better understanding the CD8+ T-cell subpopulations and by enhancing their antitumor effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology*Biology*Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.