Abstract

BackgroundDiagnosis and treatment are central elements of strategies to control Trypanosoma brucei gambiense human African trypanosomiasis (HAT). Serological screening is a key entry point in diagnostic algorithms. The Card Agglutination Test for Trypanosomiasis (CATT) has been the most widely used screening test for decades, despite a number of practical limitations that were partially addressed by the introduction of rapid diagnostic tests (RDTs). However, current RDTs are manufactured using native antigens, which are challenging to produce.Methodology/Principal findingsThe objective of this study was to evaluate the accuracy of a new RDT developed using recombinant antigens (SD BIOLINE HAT 2.0), in comparison with an RDT produced using native antigens (SD BIOLINE HAT) and CATT. A total of 57,632 individuals were screened in the Democratic Republic of the Congo, either passively at 10 health centres, or actively by 5 mobile teams, and 260 HAT cases were confirmed by parasitology. The highest sensitivity was achieved with the SD BIOLINE HAT 2.0 (71.2%), followed by CATT (62.5%) and the SD BIOLINE HAT (59.0%). The most specific test was CATT (99.2%), while the specificity of the SD BIOLINE HAT and SD BIOLINE HAT 2.0 were 98.9% and 98.1%, respectively. Sensitivity of the tests was lower than previously reported, as they identified cases from partially overlapping sub-populations. All three tests were significantly more sensitive in passive than in active screening. Combining two or three tests resulted in a markedly increased sensitivity: When the SD BIOLINE HAT was combined with the SD BIOLINE HAT 2.0, sensitivity reached 98.4% in passive and 83.0% in active screening.Conclusions/SignificanceThe recombinant antigen-based RDT was more sensitive than, and as specific as, the SD BIOLINE HAT. It was as sensitive as, but slightly less specific than CATT. While the practicality and cost-effectiveness of algorithms including several screening tests would need to be investigated, using two or more tests appears to enhance sensitivity of diagnostic algorithms, although some decrease in specificity is observed as well.

Highlights

  • Human African trypanosomiasis (HAT) is a vector-borne, neglected tropical disease, which puts 70 million people living in sub-Saharan African countries at risk [1]

  • Diagnosis of human African trypanosomiasis (HAT) relies on the identification of suspected cases by serological methods, which include recently developed rapid diagnostic tests (RDTs)

  • Current RDTs are produced using native antigens that are purified from live parasites in a laborious and dangerous process

Read more

Summary

Introduction

Human African trypanosomiasis (HAT) is a vector-borne, neglected tropical disease, which puts 70 million people living in sub-Saharan African countries at risk [1]. The most common form of the disease is caused by infection with the protozoan parasite Trypanosoma brucei gambiense (g-HAT), which in 2015, accounted for more than 97% of all reported HAT cases [2]. The card agglutination test for trypanosomiasis (CATT/T.b. gambiense) has been the most commonly used screening test for g-HAT. It detects antibodies using a suspension of purified, fixed and stained bloodstream-form trypanosomes expressing LiTat 1.3 variant surface glycoprotein (VSG), a predominant variant antigen of T.b. gambiense [5]. The Card Agglutination Test for Trypanosomiasis (CATT) has been the most widely used screening test for decades, despite a number of practical limitations that were partially addressed by the introduction of rapid diagnostic tests (RDTs). Current RDTs are manufactured using native antigens, which are challenging to produce

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call