Abstract

Synthetic Biology is an interdisciplinary approach combining biotechnology, evolutionary biology, molecular biology, systems biology and biophysics. While the exact definition of Synthetic Biology might still be debatable, its focus on design and construction of biological devices that perform useful functions is clear and of great utility to engineering algae. This relies on the re-engineering of biological circuits and optimization of certain metabolic pathways to reprogram algae and introduce new functions in them via the use of genetic modules. Genetic editing tools are primary enabling techniques in Synthetic Biology and this chapter discusses common techniques that show promise for algal gene editing. The genetic editing tools discussed in this chapter include RNA interference (RNAi) and artificial microRNAs, RNA scaffolds, transcription activator-like effector nucleases (TALENs), RNA guided Cas9 endonucleases (CRISPR), and multiplex automated genome engineering (MAGE). DNA and whole genome synthesis is another enabling technology in Synthetic Biology and might present an alternative approach to drastically and readily modify algae. Clear and powerful examples of the potential of whole genome synthesis for algal engineering are presented. Also, the development of relevant computational tools, and genetic part registries has stimulated further advancements in the field and their utility in algal research and engineering is described. For now, the majority of synthetic biology efforts are focused on microbes as many pressing problems, such as sustainability in food and energy production rely on modification of microorganisms. Synthetic modifications of algal strains to enhance desired physiological properties could lead to improvements in their utility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.