Abstract

The study aimed to prospect in silico native and analogous peptides with anti-SARS-CoV-2 potential derived from the trypsin inhibitor purified from tamarind seeds (TTIp). From the most stable theoretical model of TTIp (TTIp 56/287), in silico cleavage was performed for the theoretical identification of native peptides and generation of analogous peptides. The anti-SARS-CoV-2 potential was investigated through molecular dynamics (MD) simulation between the peptides and binding sites of transmembrane serine protease 2 (TMPRSS2), responsible for the entry of SARS-CoV-2 into the host cell. Five native and analogous peptides were obtained and validated through chemical and physical parameters. The best interaction potential energy (IPE) occurred between TMPRSS2 and one of the native peptides obtained by cleavage with trypsin and its analogous peptide. Thus, both peptides showed many hydrophobic residues, a common physical–chemical property among the peptides that inhibit the entry of enveloped viruses, such as SARS-CoV-2, present in specific drugs to treat COVID-19.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.