Abstract

We present a design for a near-ultraviolet (NUV) imaging instrument which may be flown on a range of available platforms, including high-altitude balloons, nanosatellites, or space missions. Although all current UV space missions adopt a Ritchey-Chretain telescope design, this requires aspheric optics, making the optical system complex, expensive and challenging for manufacturing and alignment. An all-spherical configuration is a cost-effective and simple solution. We have aimed for a small payload which may be launched by different platforms and we have designed a compact, light-weight payload which will withstand all launch loads. No other UV payloads have been previously reported with an all-spherical optical design for imaging in the NUV domain and a weight below 2 kg. Our main science goal is focussed on bright UV sources not accessible by the more sensitive large space UV missions. Here we discuss various aspects of design and development of the complete instrument, the structural and finite-element analysis of the system performed to ensure that the payload withstands launch-load stresses and vibrations. We expect to fly this telescope -- Lunar Ultraviolet Cosmic Imager (LUCI) -- on a spacecraft to the Moon as part of the Indian entry into Google X-Prize competition. Observations from the Moon provide a unique opportunity to observe the sky from a stable platform far above the Earth's atmosphere. However, we will explore other opportunities as well, and will fly this telescope on a high-altitude balloon later this year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.