Abstract

Brownian motion theory is always challenging how to describe diffusion phenomena with the main issue is how to extend the classical theory of Brownian motion to the special relativity framework. In this study, we formulated dynamics and distribution of a Brownian particle in relativistic framework by using Langevin and Fokker-Planck equation. By representing Brownian particle dynamics by Langevin equation, the velocity curves were dependent on the presence of viscous friction coefficient (heat bath), and were used generalized in special relativity theory, A relativistic Langevin equation reduces to the classical theory at low velocities. Likewise, the distribution of Brownian particles is represented as a stationary solution of the relativistic Fokker-Planck equation. From numerical results, we found that the probability density in the relativistic Fokker-Planck equation for was reduced to the standard Fokker-Planck equation in Netownian classical theory. For the calculation result showed that the Hanggi-Klimontovich approach has a consistent result to the relativistic Maxwell distribution. This work could open a promising interpretation to formulate the diffusion phenomena into general relativity theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.