Abstract

Plasma prorenin is commonly elevated in diabetic patients and appears to predict the development of diabetic nephropathy. However, the pathological role of prorenin is unclear. In the present study, a transgenic, inducible, hepatic prorenin-overexpressing rat model was generated and the effect of prorenin in organ injury was examined. Four groups of rats (cyp1a1 prorenin transgenic male and female rats and non-transgenic littermates) were assigned to receive a diet containing 0.3% of the transgene inducer indole-3-carbinol (I3C) for 4 weeks. Plasma prorenin concentration was increased and mean arterial pressure (MAP) increased from 80 ± 18 to 138 ± 17 (mmHg), whereas renal prorenin/renin protein expression was unchanged, in transgenic rats fed with I3C diet. The intact prorenin, not renin, in plasma and urine samples was further observed by Western blot analysis. Importantly, transgenic rats with high levels of prorenin developed albuminuria, glomerular and tubulointerstitial fibrosis associated with increased expression of transforming growth factor β (TGFβ) 1 (TGFβ1), plasminogen activator inhibitor-1 (PAI-1), collagen, and fibronectin (FN). These rats also exhibited cardiac hypertrophy determined by echocardiography, with elevated ratio of heart weight to body weight (HW/BW). Cardiac collagen in interstitial and perivascular regions was prominent, accompanied by the increase in mRNA contents of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), β-myosin heavy chain (β-MHC), TGFβ1, PAI-1, and collagen in the heart tissue. Furthermore, renal protein levels of p-NF-κB-p65 and monocyte chemoattractant protein-1 (MCP-1), NAPDH oxidases, malondialdehyde (MDA) and 8-isoprostane (8-IP), p-ERK, p-β-catenin, and p-Akt were dramatically increased in prorenin overexpressing rats. These results indicate that prorenin, without being converted into renin, causes hypertension, renal and cardiac fibrosis via the induction of inflammation, oxidative stress and the ERK, β-catenin, and Akt-mediated signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.