Abstract

A HElium Nanodroplet Isolation (HENDI) experiment was performed to explore the absorption spectrum of the propyne-water complex ( C H 3 CCH ⋯ H 2 O ). Two spectral regions were investigated, near the CH stretch v1 of the propyne moiety and near the asymmetric stretch v3 of the water moiety. Ab-initio calculations were performed at the MP2/aug-cc-pVTZ level to estimate the spectroscopic constants of the free complex. This provided the necessary parameters to simulate the absorption spectrum of the complex and thus facilitate the interpretation of the experiment. The observed spectrum is consistent with a structure of the complex where two H-bonds between water and propyne form a five member ring. The later was predicted by Lopes et al. [J. Mol. Struct. 834, 258 (2007)].A HElium Nanodroplet Isolation (HENDI) experiment was performed to explore the absorption spectrum of the propyne-water complex ( C H 3 CCH ⋯ H 2 O ). Two spectral regions were investigated, near the CH stretch v1 of the propyne moiety and near the asymmetric stretch v3 of the water moiety. Ab-initio calculations were performed at the MP2/aug-cc-pVTZ level to estimate the spectroscopic constants of the free complex. This provided the necessary parameters to simulate the absorption spectrum of the complex and thus facilitate the interpretation of the experiment. The observed spectrum is consistent with a structure of the complex where two H-bonds between water and propyne form a five member ring. The later was predicted by Lopes et al. [J. Mol. Struct. 834, 258 (2007)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.