Abstract

An innovative thermal desorption method, propylene glycol (PG)-mixed steam enhanced extraction, is proposed for a highly efficient remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. It is found that injecting PG-mixed steam into soil column could obtain > 99% removal efficiencies of PAHs either for the pyrene-spiked soil, or for the contaminated field soil with high-molecular-weight PAHs. PG is a safe and low-cost dihydric alcohol with a boiling point higher than water. When the PG-mixed steam penetrated the contaminated soil, the PG vapor preferentially condensed to form a hot liquid with concentrated PG (e.g., from 30 wt% PG in gas phase to 90 wt% PG in the liquid phase), which would significantly solubilize the PAHs and enhance their desorption from soils. The results also revealed that the effluents derived from the PG-mixed steam could be purified by removing the desorbed PAHs using a simple coagulation treatment, and the recovered PG solution could be reused. The plant assay using wheat seeds showed that the remediated soil had a good regreening potential. Our results demonstrate that PG-mixed steam injection is a promising thermal desorption method for an efficient and sustainable remediation of PAHs-contaminated soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call